当前位置:首页 > 水产喂养 >传统大数据分析领域遭遇四大窘迫,怎么破

传统大数据分析领域遭遇四大窘迫,怎么破

2020-11-08 09:29:42 紫彤随笔
电商数据分析培训

传统大数据分析领域遭遇四大窘迫,怎么破

大数据时代,数据分析成为企业决策的坚实后台。越来越多的企业依靠大数据分析实现价值落地,在生产、市场、内部管理等方面实现智慧化运营。那么目前,大数据分析领域有着怎样的窘迫?在未来的五年,全球大数据分析在技术、行业上有着怎样的趋势?

大数据分析领域的四个窘迫

1、数据分析之数据准备瓶颈:OLAP

我们知道从上个世纪90年代,甚至包括80年代末,OLAP就已经被很好地使用了,但是它本身是4C(Compatibility、Connectedness、Cost、Capitalization)的,IT部门需要去预见数据从何而来、从何而去,然后再构建OLAP。


但是我们知道企业的数据和运营的过程,不是简单的4C预见就可以解决的问题,而是一个持续动态变化的过程,它需要在第一时间交给业务部门做数据分析,而OLAP做不到这一点。一旦有一个数据分析的变化,我们需要交给IT部门去重新构建OLAP。所以如果这个瓶颈不打掉,企业的数据化运营的链条是不通畅的,并且业务流程会很缓慢,同时企业的运营效率和竞争能力也会大打折扣。


2、大数据分析之找到答案瓶颈:静态报告

很多时候,大家依旧在用最基础的工作去做数据分析,就是做报告。业务人员提需求过来,我们就把它做成一张报告,再提一个需求过来就是第二张报告,再提过来还是报告,所有的报告是都是静态的过程。沟通的高效在很多时候一定是交互的,如果我们采用邮件的形式沟通,假设今天发出去,第二天才有回复,那这一天就浪费了。


所以静态报告就跟邮件一样,我们需要的是一个交互的过程,对数据进行分析、发掘它的价值。假如看到报告后,我们就发现了一个问题,然后可能就会去问第二个问题。比如华南的几个业务增长发生了变化,上个季度可能是100%的增长,到这个季度增长降成了10%,这个时候我们就会去问为什么,但是静态报告是不能告诉我们答案的。这个问题只能再交给IT部门重新计算一遍,再给出一张静态报告。如果不打掉这个窘迫,会给企业数据化运营带来很大的挑战。

3.大数据分析之分析流程瓶颈:IT部门

一个企业里面有非常多的部门,假如有制造、市场、设计、人事、财务等部门。但是这么多部门的数据化运营工作,往往都只给IT部门来做真正的实施。当这些部门有数据分析的需求后,他们都会递交给IT部门,然后IT部门的加班非常严重,他们疲于应付,但是这样做出的结果还非常不好,大家对IT部门的诟病都很深。比如做中秋节的策划,这个促销策划需要一些数据分析的报告来支撑。但是IT部门很可能在中秋节之前,还没有把报告交给市场部门,这会给企业的营销带来极大的不便。


4、大数据分析之厂商瓶颈:缺乏高质量的本土厂商

我们认为在国内缺乏高质量的本土厂商。以前大家在聊大数据分析这件事情时,很可能会说SAP、IBM等等,却没有一家真的做得很棒的本土厂商出现。也有一些本土大数据分析厂商,往往以非常低的价格和比较差的服务去做一些低端的市场。

其实在目前的中国,已经有非常多的好的企业,在各自的行业崛起。以前我们买一个电视机,可能要买东芝,后来我们可以买海尔。以前买空调需要买三菱,现在我们要买美的或者格力。在各个行业都发生了巨大的改变,有非常多的本土厂商在崛起,但是大数据分析这个领域,我们认为是没有的。所以这是我们非常大的一个责任,希望可以诸位一起深入有效地合作,去改变这个现状,让本土的厂商可以提供已有的服务和产品,帮助大家做好大数据分析的支撑和服务的工作。


大数据分析 数据分析师